ISSN 1392 — 124X INFORMACINES TECHNOLOGIJOS IR VALDYMAS, 2003, Nr.4(29)

OBJECT-ORIENTED IMPLEMENTATION OF TRANSIENT WAVE
PROPAGATION FINITE ELEMENT MODELS

Rimantas Barauskas, Mindaugas Kuprys, Ula Leonaviciaté

Kaunas University of Technology
Studenty str: 50-407, LT-3031 Kaunas

Abstract. The possibilities to use the object-oriented programming methodology for transient elastic wave
propagation finite element models are discussed. A comparative analysis of functional, procedural and object-oriented
programming approaches for the finite element method is presented. The object-oriented method is demonstrated to
have significant advantages for development of the finite element transient dynamics application.

1. Introduction

The object-oriented programming (OOP) is widely
accepted as a methodology for writing modular and
reusable code. Popularity of the OOP as an alternative
to traditional, procedural or functional programming
methods is growing fast as it provides significant im-
provements that allow construction and maintenance
of the complex software systems.

The applications of the finite element analysis
require one of the highest codes writing standards in
order to ensure the effective and quick program execu-
tion, as well as, reusing and sharing of the code for the
further development of the program. These features
demand the change from the steady procedural
programming to the higher quality programming. The
OOP seems to be well suited for such needs [7].

In recent years a lot of work has been done in re-
writing traditional FE procedures into object-oriented
(O0) code without redesigning the whole program. In
this way higher functionality cannot be guaranteed,
however it illustrates perfectly the capabilities of OO
approach. In reality, production of the efficient OO
programs involves much more than a simple trans-
lation of FORTRAN, C or any other procedural
language codes to any OO language [7].

Why OO technique is better to use in FE model?
There is no unambiguous answer to this question. First
of all it strictly depends upon the nature of the
problem. If the pending task is simple, the OO isn’t
the best solution. On the other hand, if the problem is
complex, the set of arguments can be easily declared
which will lead to OO approach appliance. An
increasing number of OO packages have been already
developed by different authors to solve wide range of
problems. Each of them provides different technique
dependent on the problem. The field of finite element

analysis where OPP has been used is quite wide,
starting from stress analysis [4], structural dynamics
[10], shell structures [9], non-linear plastic strain [8]
and ending with the contact problems [11]. The
application used as an example in this paper is
transient wave propagation in an elastic media.

The aim of this paper is to explain and illustrate
the advantages of OOP in the application area of
transient dynamics problems with particular emphasis
to simulations of the wave propagation in an elastic
environment. A description of implemented classes of
their hierarchy and some details of implementation are
also provided in this paper.

The next section will explain some of the basic
programming techniques, as well as, the main OO
features for the finite element method (FEM) will be
discussed. The third section will explain the basic
steps of the finite element (FE) program. Section 4
will explain OO implementation of the program. A
hierarchy of classes is proposed and discussed; it
provides a description of all main classes and
realizations of the methods. The last section will
illustrate the results obtained by the program.

2. Programming approaches for the FEM
application
2.1. Procedural, Functional and Object- Oriented
programming

The three major programming approaches used
for FEM implementations are:

e Object-oriented programming (C++, C#, JAVA,
etc.);

¢ Procedural programming (C, Visual Basic, FORT-
RAN, Ada, etc.);

Obji

proc
tiont
tools
for

prob
dyna
prop

proct
Visw:
tages
as M
toget
deve
almo
an e
Studi
lizati
like
distri
Math
like

prete

B e T

e A2 Y

i AR L

Sy

Object-Oriented Implementation of Transient Wave Propagation Finite Element Models

¢ Functional programming (Lisp, MatLab, Mathe-
matica, ANSYS, etc.);

Functional programming languages are close to
procedural ones. They provide many built-in func-
tions, easy operations with data and visualization
tools. In the FE case, functional languages are useful
for solving some non-complex tasks, e.g., static’s
problems. Computation time is significantly longer if
dynamic tasks such as heat transfer, transient wave
propagation or contact problems are being solved.

Some programming languages combine two or
three programming approaches. For instance, C++ is
procedural, functional, and object-oriented, while
Visual Basic is procedural and functional [5]. Advan-
tages of using debugging and development tools such
as Microsoft Visual Studio or Borland C++ Builder,
together with graphics library OpenGL, enables the
development of the highest quality FE applications for
almost any engineering problem. The program used as
an example in this paper is developed with Visual
Studio 6.0 by integrating OpenGL for graphical visua-
lization. Another advantage of compiled languages
like C++ is that the executable program can be
distributed to people who don’t have the compiler.
Mathematically oriented programming environments
like MatLab, are more interpreter languages; inter-
preters are necessary to run the code.

2.2. The main OO features for the FE application

OO programming technique is widely used to
develop many complex scientific programs; FEM
programs are not an exception. In recent years OOP
has proved to be one of the easiest, fastest and most
efficient ways to develop FE applications.

There are three basic OO properties such as en-
capsulation (data hiding), inheritance and polymor-
phism that are combined together in order to give OOP
features which are useful for FE programs. The basic
components of the FEM, like the node, the element,
the material, can easily be fitted into an objects world,
with their own behavior, state and identity [2].

Encapsulation and data hiding

Encapsulation and data hiding is the first and the
most important idea in the OOP design. Data hiding is
a highly valued feature which enables the use of an
object without even knowing how it works internally.
Mostly all of the attributes and methods are private,
which means they cannot be seen or altered by any
other object. Data exchange with other methods is
being performed only through public methods [3].
Public functions known as accessor methods should
be created in order to set or get the private member
variables. The property of being self-contained unit is
called encapsulation [6]. The main advantage of data
hiding is the safe use of class variables. “Safe use”
means that variables are accessed only by class
methods and cannot be changed by any other classes
that are not permitted for them.

31

In the FE application developed by any OO
language, encapsulation (data hiding) is used almost
everywhere. For instance, in the program discussed in
this paper (wave propagation) the class Dynamic-
Equation does not have value “number of elements”
(m_numberOfElements) in the structure. The value
m_numberOfElements is a private member of class
General. If we need to get this value, first of all we
have to initialize the pointer (*g_pointer) to General
in class DynamicEquation and to access it by using
public accessor Get NumberOfElements:

¥
int numOfElem = 0; // number of elements
General *g_pointer; // pointer to General
numOfElem=g_ pointer->
Get_NumberOfElements() ;
l/=-==
Inheritance

Inheritance is the process by which a class inhe-
rits the properties of its base class. Methods and in-
stance variables are inherited. As an OO language
C++ supports the idea of reuse through inheritance.
New subclass is derived from its base class. If we
have derived a new class, we can easily create new
objects.

In the FE case the inheritance can be used in
several ways. Assume that the analyzed structure is
subdivided into a number of finite elements consisting
of three or four nodes. In our example, triangle finite
elements have been used; however it can be easily
extended for quadrilateral and other element shapes.
Inheritance, here, could be found as the best solution.
An abstraction of an element helps to derive new
classes describing the finite element. So, it is point to
have some general class Element which would be
parent-class for all derived subclasses (e.g., Triangle-
Element). Tt could have such attributes as element
identifier, material identifier and element thickness.
All derived classes could have their own attributes. In
C++ it looks like:
===

class Element

{

private:
int m _elemNr; // element number
int m_mat num; // material number
double m h; // element thickness

publiec:
- // methods

};

class TriangleElement :

{

pPrivate:
int m_firstNode;
int m_secondNode; // second node
int m_thirdNode; // third node
double m width; // element width
double m_S; // square of an element

public:

public Element

// first node

// methods

}:
/===

The presented piece of code demonstrates the
definition of the abstract class Element with its private

members. There are three private data members de-
fined in this class: m_elemNr (number of an element),
m_mat_num (number of a particular element material)
and m_h (thickness of an element). These variables do
not depend upon the shape of the finite element.
Other variables m_width (width of an element), m_S
(area of an element) and nodes numbers should be de-
fined in a particular class, currently in the Triangle-
Element class.

More details about the structure of the classes’
hierarchy presented in section 4.1.

Polymorphism

Polymorphism can be considered as a unique
feature of OOP allowing different objects to respond
to the same message in their own specific way. In our
example polymorphism feature wasn’t used, however
it certainly will be used in the future for extensibility
of the application.

3. Basic steps of the FE program

3.1. Basic equations of the transient dynamic
analysis

Transient wave propagation analysis is performed
by solving the structural dynamic equation:

Mo }+ [K}u}= (F(e)), (1)
where [M], [K] - the structure mass and stiffness
matrices, respectively; {F} — the external load vector;

{u}, {U} are the nodal displacement and acceleration
vectors of the structure.)

The stiffness matrix [K] of the complete struc-
ture is obtained by assembling together the stiffness
matrices [K‘]zh ”[BIT[D][B]dV of each individual

v

element, where [B] — matrix defining the relation bet-
ween the strain vector and the nodal displacements,
[D] — media stiffness tensor.

100000
010000
0010

The matrix [M’]zd’fﬁo i 4l g g is the
0000710
00000 1

lumped (diagonal) mass matrix, where p - density,
h ~ thickness of the element; S,- area of the
triangle. The matrix [‘] is obtained by lumping the

mass in equal parts between the nodes of the element
[1]. The assembly of the elements matrices together

results in the structural matrices [K]and [M].

32

R. Barauskas, M. Kuprys, U. Leonavicidte

Full investigation of the wave process dynamics
can be performed by integrating the dynamic equation
numerically. The Central Difference time integration
scheme reads as

2
(U,a =" {F'}"[[K “?F[M]]{U‘}_ @)

v,

where [M]: [ﬁ]:zlt—z-[M] (3), At is the time in-

tegration step. The initial conditions are assumed to be
{U},=0, {U}n =0;

3.2. Time step selection

The Central Difference Scheme (CDS) is said
stable if the upper bound of time integration step Af
is:

/
Af <2 (4)
c

where /_; — minimal linear dimension of the smallest
finite element in the structure.

3.3. Post processing

The post processing step involves calculations of
stresses in elements by using obtained values of nodal
displacements as:

a qQ
"

,1=PlBl]=[clvr].

xy

)=

al

where [G] — stress matrix of the element, o,,0, —

longitudinal stresses and 7,, — shear stresses.

Two different external loading schemes were ana-
lyzed in the computed examples. The first research
was performed by applying the step load. The excita-
tion vector gets its value at time point t=0 and remains
{F(t)} = const over all the simulation time T .

The second investigation takes the load vector as
F(t)= 4-sin(w-1), (6)
where ¢ — pending time step, A — excitation ampli-

2
tude; @ = % — angular frequency.

The equivalent stresses in the i-th element are
calculated as

ixy

= Jl(g& -o,)2 +=0o} +—'1’-0'§_ .M

Obj

3.4

lust
dyr

shc

w £Xt

Object-Oriented Implementation of Transient Wave Propagation Finite Element Models

3.4. Overall flowchart

The flowchart diagram presented in Figure 1, il-
lustrates the general algorithm for solving the transient
dynamic problems in the FE method. The comments
in rectangular callouts describe the particular case
shown in this paper.

 Pre-processing
o BT i Initialization of all necessary
= data. Geometrical model of
4 | Tnitialization the structure, material and etc.

TR : Structure is subdivided into

triangle elements.

l Mesh generation
Initialization of

simulation time T and

time step Ar .
‘j P

i=0, loop until
i=n, here n is the

S number of elements.

Element stiffness J b(f]:hJ-J-[BF[DIB}IV

matrix

b

r Element ‘mass matrix

bac]- o [Ty
T

Assemble the
structure stiffness

[K] and mass [[\‘[]

matrices.

L Assembling of matrices

l.L t=0, loop until

t=T, here T is simulation
t=t+At time.

J\L u Compute load vector

Campute external forces 0

U I ion of structural

Performing the time dw“.‘_’_'if AEBonn
integration [l [Jfu} = fFe)
is being performed by

means of the central
difference integration
scheme.

Presentation of i i gt
results ; '_ '_.__Post-ﬁro_oesslﬂg i

Figure 1. General algorithm of the FEM

The pre-processing stage involves the preparation
of the data for calculations. Here the geometrical mo-
del of the structure is composed and meshed by
subdividing it into a number of triangle elements.
Material properties, surface loads and initial nodal
displacements are assigned. '

The processing stage involves all computational
operations. The main task in this stage is to solve the

dynamic equation (1). First of all, time settings should
be set (step “Time scheme”). Next the structural
stiffness ([K]) and mass ([M]) matrices have to be

assembled, and the external load vector (:F}) has to

be computed. Then, the central Difference Scheme
(CDS) is used to integrate numerically the equation.

The post-processing stage is designed for the
presentation of the results. At each time step, the
propagating wave is represented by the equivalent
stresses (7) contour plot. Results are visualized in the
3D view by using Visual C++ and OpenGL tools.

4. OO implementation of the program
4.1. Class hierarchy

The class hierarchy of the code is reviewed and a
brief description of each class is given in this section
(see Figure 2). Subclasses are indicated under their
parent-classes with a right indent.

ColorBar
Graphics

Figure 2. The class hierarchy

The design of class structure is developed accor-
ding to two primary conditions: the particular class

should implement particular task and if it is possible,
it should be reusable in other program.
Class General

The General class is the main one in all class hie-
rarchy. It manages the whole solution algorithm. The
class contains the data describing the problem size
such as: number of nodes, number of elements, num-
ber of nodes of an element, etc. The principal tasks of
this class are:

e receive the messages from the user and initiate the
corresponding operations;

e manage all necessary operations to solve the
problem.
Class FileReader

The FileReader class reads all the data from the
data file and writes it to some kind of list. The
principal tasks performed by the class are:

e create elements list;
e create nodes list;

e create materials list.

Class ElementList

The class manages the list of the structure
elements. The class principal tasks are:

e to manage elements list;

e to add, delete or return an element of the list.

Class Element

This class is an abstract class for all kinds of ele-
ments. It is useful to have such class for extensibility
reasons. The class manages attributes and methods
which are common to every kind of an element.

This class is a parent-class of the class

TriangleElement. Its principal tasks are:
e calculate stiffness and mass matrices of elements;
e calculate stresses in elements;

e store and return attributes.

Class TriangleElement

The class implements a triangle element. It inhe-
rits methods and attributes from its base-class (Ele-
ment) and adds to it its own behavior:

e calculate strain matrices [B] and form function
matrices [N] -
e store and return attributes.

Class NodesList

This class manages the list of the structure nodes.
Its principal tasks are:

e to manage nodes list;
e toadd, delete or return node of the list.

i i _

34

R. Barauskas, M. Kuprys, U. Leonavicidte

Class Point

The class manages the attributes of the point. This
class is a base-class of the class Node. Its principal
tasks are:

e to manage point coordinates;

e to store and return its attributes;

Class Node

A node is an attribute of an element. It inherits
methods and attributes from the class Point and
performs the following task:

e to store and return its attributes.

Class Material

This class is an abstract class for all possible
materials. It is used as a base-class for derived classes
implementing a particular material. Tasks it performs
are: : ;

e o store and return its attributes.

Class ElasticMaterial

This class implements an elastic material. It is
derived from the class Material. Tasks it performs are:

e to return material properties: Young’s modulus,
Poisson ratio, material density;

e calculate matrix [D] (elastic stiffness tensor).

Class TimeScheme

This class defines time conditions for particular
problem. Tasks it performs are:

e sets and returns its attributes: simulation time T
and time step Ar.

Class StiffnessMatrix

This class implements the operation of assembly
of the structure stiffness matrix [K]

Class MassMatrix

This class implements the operation of assembly
of the structure stiffness matrix [M].

Class Load

This class is an abstract class for various loads. It
is used as a base-class for derived classes implemen-
ting particular load. The main task is:

e to store and return attributes, e.g. force value;

Class NodalLoad

The nodal load is a lumped load which acts
directly on the structure nodes. It inherits methods and
attributes from base-class Load. The main tasks are:

e to compute step nodal loads over all time steps;

e to compute sinusoidal nodal loads over all time
steps;

Object-Oriented Implementation of Transient Wave Propagation Finite Element Models

Class DynamicEquation

This class implements all operations associated
with solving the dynamic equation. The tasks it
performs are:

e to solve the dynamic equation;
e to store and return its attributes.

Class IntegrationScheme

This class is an abstract class for time integration
schemes. In this implementation CDS is used, but it
can be extended for other kinds of time integration
schemes.

Class CDS

This class implements the Central Difference time
integration scheme.

Class Math

It implements all necessary mathematical opera-
tions with matrices and vectors,

Class ColorBar

It performs calculation of the color palette for
contour plots.

Class Graphics

This class implements graphical visualization of
the results.

4.2. Main features of classes and objects

4.2.1. Node

The node is the smallest part of the structure.
Here we have to describe point coordinates, number of
degrees of freedom (DOF), etc. There are five
attributes associated with a node: coordinates x (m_X)
and y (m_Y), inherited from Point class, number of
node (m_NodeNr), array of loads for all nodes
(m_load mas) and numbers of nodes which are
affected (m_load_nodes_num) by external loads.

/1-==
class Point : -
{
Private:
double m X; // x coordinate
double m Y; // y coordinate
public:
void SetX(double) ;
void SetY (double) ;
const double &Get_X();
const double &Get ¥();
};
class Node : public Point
{
Private:
int m_NodeNr; // node number
static int *m_load mas; // array of
// effected nodes
static int m_load nodes_num; // number of
// effected nodes
public:
void Set_NodeNr(int &nr) { m NodeNr = nr;
¥:
static void Set_load mas(int *loadmas)

35

{ m_load mas = loadmas; };

statiec woid Sat_load_mdes__num(int &num)

{ m_load_nod.ea_num = num; };

const int &Get NodeNr() { return
m_NodeNr; };

static int *Get load mas()

{ return m_locad mas; };

static int &Get_load nodes num()

{ return m_load nodes_num; };
{/===

All methods in class Node are known as acces-
sors. This means that they do only two operations
upon the particular attribute: to set or to get its value.
They are used when other classes need to access or to
modify the private data of this class.

4.2.2. Element

The class Element manages attributes and me-
thods common to all kinds of elements. Its child class
TriangleElement inherits Element and adds its own
attributes and methods. The code fragment below de-
scribes all attributes and methods in both classes.

1/---
class Element
{
private:
int m_elemNr; // element number
int m mat num; // material number
double m_h; // element thickness
public:
double **computeElemStiffMatrix
(TriangleElement *, double **);
double **computeElemMassMatrix
(TriangleElement *, double **);
void computeStress() ;
. // others set and get accessors
}:
class TriangleElement : public Element
{
private:
int m firstNode; // first node of element
int m_secondNode;// second node of element
int m_thirdNode; // third node of element
double m _width; // width of element
double m_S; // square of element
publiec:
double **computeBMatrix
(TriangleElement *, double **);
double **computeNMatrix
(TriangleElement *, double **);
double Side_ Length(int, int);
double Elem Area(double, double, double);
double Length_ Min(double, double,
double) ;
. [/ others set and get accessors
}:
//==-

The class TriangleElement inherits three attri-
butes from the class Element: element number
(m_elemNr) the material number of the element

(m_mat_num) and thickness of the element (m_h)
which is common to all subclasses of class Element.

Attributes describing a triangle element are the
three nodes numbers (m_firstNode, m_secondNode,
m_thirdNode), triangle width (m_width) and area
(m_S).

The methods of the child class TriangleElement
compute the strain’ matrix [B] and shape functions

[N] which are dependent upon the shape of an ele-

ment (methods computeBMatrix() and compute-
NMatrix()). Two methods implementing element
stiffness and mass computation are: computeElem-
StiffMatrix() and computeElemMassMatrix(). Method
computeStress() performs calculations of stresses in
the element.

4.2.3. Material

Materials used in the structure are described by
two classes. The class Material is an abstract class. It
is used as a parent-class for all derived subclasses. Its
child class ElasticMaterial has three attributes: Young
modulus (m_E), Poisson ratio (m_Puas) and material
density (m_q). Calculation of the elasticity tensor- {D]
is performed in the class ElasticMatrial.

/===
class Material
{
public:
Material();
~Material () ;
class ElasticMaterial :
{
private:
static double *m _E; // Young modulus
static double *m_g; // material density
static double *m Puas; // Poisson ratio
publie:
double **computeDMatrix(int, double *¥);
. // others set and get accessors

public Material

)
//=--=

4.3. Methods .
4.3.1 The left-hand side of the dynamic equation

The procedure of numerical integration of the
dynamic equation (1) is implemented in the class
DynamicEquation by means of computeDisplace-
ments() method. The code is shown below:

l==
void DynamicEquation: :computeDisplacements ()
{
CDS cd;
NodalLoad nl;
MassMatrix mass;
StiffnessMatrix stiff;
mass.computeMassMatrix() ;
stiff.computeStiffMatrix() ;
if (General::Get_Type() == 0)
nl.computeLoad() ;
for (iter=0; iter<time mom; iter++)
{
t += TimeScheme::Get_deltaT() ;
if (General::Get_Type() == 1)
nl.computeLoadSin (t) ;
cd.solveCDS (iterx) ;
}

}
/1---

The basic task of this method is to assemble and
to solve the dynamic equation using central difference

R. Barauskas, M. Kuprys, U. Leonavicidte

time integration scheme. Methods computeMassMat-
rix() and computeStiffMatrix() compute mass and
stiffness matrices, respectively (the code of the me-
thod computeStiffMatrix() is shown below). The
central difference scheme is implemented by means of
solveCDS() method of the class CDS. Methods com-
puteLoad() and computeLoadSin() of the class
NodalLoad compute loads vectors.

/1---
void StiffnessMatrix::computeStiffMatrix()
{
int i =
int j =
int nd = General::Get_ NodesOfElement () *
General: :Get NumberOfDofs () ;
int n = General::Get_ NumberOfElements () ;
double **Ke Matrix = NULL;
Element elem;
ElementList *EL =
ElementList::Get_Stavt();
Ke Matrix = new double*[nd];
for (i=0; i<nd; i++)
Ke Matrix[i] = new double[nd];
for (i=0; i<n; i++)
{

0;
0;

Ke Matrix =
elem.computeElemStiffMatrix
(EL->Get_m elem(),
Ke_Matrix) ;
m K = construct(m K, Ke_ Matrix,
EL->Get_m elem()) ;
EL = EL->Get_m next();
}
for (i=0; i<nd; i++)
delete [] Ke Matrix[i];
delete [] Ke Matrix;
Ke Matrix = NULL;
}
Lif===

The method computeElemStiffMatrix(EL->Get_
m_elem()) computes the stiffness matrix of the par-
ticular element. The method construct() which is
called in computeStiffMatrix() performs assembly of
the structure stiffness matrix. The argument EL->Get _
m_elem() is a pointer to a particular element.

4.3.2. The right-hand side

The computation of the right-hand side (external
forces) is performed in two cases, when the load is
fixed and when it’s sinusoidal. Below is shown
computeLoadSin() method implementing sinusoidal
nodal load (class NodalLoad).

ff===
void Nodalload: :computeLoadSin (double t)
{
computeLoadNodes () ;
if (t<l/TimeScheme::Get_ f())
force = m _amplitude* (sin(2*3.14*
TimeScheme: :Get f£() *t));
else
force = 0;
loadVector (force) ;
}
7 s

The method computeLoadNodes() sets array of
nodes numbers which are affected. The method
loadVector(force) sets the load value to a particular

44.)

~ satis!
o

starti
easy

e.g

~ mate

be a
struc

teriz
thei
afttri

5. %

regi

regi
met
law
exc
bee

}mmguﬂ e

Object-Oriented Implementation of Transient Wave Propagation Finite Element Models

node. The argument “force” is the value of the exter-
nal load at a given time step.

4.4. Extension possibilities for future development

The structure of the program was designed to
satisfy three main features: run-time -efficiency,
flexibility and extendibility. This program is used as a
starting package for future research, so it has to be
easy extendible to perform other tasks.

The addition of a new component to the code,
e.g. a new finite element shape (rectangle), a new
material (plastic) or an external load (elemental) could
be adopted easily because of flexible class hierarchy
structure:

Element
TriangleElement
RectangleElement

Material
ElasticMaterial
PlasticMaterial

Load
NodalLaod
ElementalLoad

New classes (e.g., RectangleElement, PlasticMa-
terial, ElementalLoad, etc.) inherit all the features of
their parent-classes and only a minimal number of
attributes and methods have to be added.

5. Examples

The geometry and characteristics of a 2D elastic
region in which the wave propagation has been
analyzed are presented in Figure 3.

The action of a transducer at the boundary of the
region is presented by time-varying forces. The geo-
metrical coordinates of the transducer and the time
law of the excitation are known. Two® cases of
excitation forces (step force and harmonic force) have
been analyzed.

transducer
Fa

F(t)

Figure 3. Elastic media

37

6. Results

The structure meshed by triangle elements is pre-
sented in Figure 4. Results presented in figures below
are shown in 3D case, but actually the problem was
solved in plane. Figure 5 illustrates “frozen” view of
the propagating wave in terms of equivalent stresses in
the structure affected by step load. Equivalent stresses
obtained by applying the harmonic load are given in
Figure 6.

I Ay

EANELYT WAL FEOP AT PN

BaESESN

M‘-ﬂﬂ-‘-m“-ﬂ“ :

Figure 4. Media meshed by triangle elements

TRABEEXT WATE FACEASATION FLRTLAN

Figure 5. Equivalent stresses of the structure after
120 time steps

ECTTT e L e s

s

Figure 6. Equivalent stresses of the structure (sinusoidal
shape of excitation forces) after 120 time steps

7. Conclusions

An object-oriented approach for creating finite
element program for the wave propagation analysis in
an elastic environment has been described. Several
programming approaches, as well as, the main OO
advantages have been discussed.

The OO programming adopted for the FE method
allows the easy development of program extensions.
The example, presented in the transient wave
propagation program shows the advantages of the
code flexibility and efficiency.

Visualization facilities in OpenGL, especially in
3D, give many possibilities for presenting results in
good view with fast execution time. All reasons tend
that OO programming approach is one of the best in
FE applications development.

References

[1] R. Barauskas. On space and time step sizes in ultra-
sonic pulse propagation modeling. European Confe-
rence on Computational Mechanics, Cracow, June
2001, 26-29.

[2] S. Commend and T. Zimmermann. Object-Oriented
Nonlinear Finite Element Programming: a Primer.
Advances in Engeneering Sofiware, Vol 8, 2001, 611-
628.

[3] J.T. Cross, 1. Masters and R.W. Lewis. Why you
should consider object-oriented programming techni-
ques for finite element methods. Object-oriented prog-
ramming techniques. International Journal of Nume-
rical Methods for Heat & Fluid Flow, Vol.9, No.3,
MCB University Press, 1999, 333-347.

38

[4]

[6]

(8]

19

0]

[11]

R. Barauskas, M. Kuprys, U. Leonavitiate

Y. Dubois-Pelerin, T. Zimmermann. Object-oriented
finite element programming 3. An efficient implemen-
tation in C++. Computer Methods in Applied Mecha-
nics and Engineering, Vol.108, 165-183.

Z.Q. Feng. 2D or 3D frictional contact algorithms and
applications in a large deformation context. Communi-
cations in Numerical Methods in Engineering, Vol.11,
409-416.

J. Liberty. C++ in 21 Days. Second Edition. Sams
Publishing, Indianapolis, 1997.

R.L Mackie. Object Oriented Methods and Finite Ele-
ment Analysis. Saxe-Coburg Publications, 2002.

P. Mentrey, T. Zimmermann. Object-oriented non-
linear finite element analysis — application to J2
plasticity. Computers and Structures, Vol 49, 767-777.

H. Ohtsubo, Y. Kawamura, A. Kubota. Develop-
ment of the object-oriented finite element modelling
system — modify. Engineering with Computers, Vol.9,
187-197. ;

R.V. Pidaparti, A.V. Hudli. Dynamic analysis of
structures using object-oriented techniques. Computers
and Structures, Vol 49, 149-156.

E. Stensrud, I. Myrtveit. Measuring productivity of
object-oriented vs procedural programming languages:
Towards an experimental design. Oslo, Norway.

=
'F“-Ev‘i."-:-'-

-

K S ——— G

